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Polychlorinated Biphenyls 105 and 118 Form Thyroid Hormone Receptor
Agonists after Cytochrome P4501A1 Activation in Rat Pituitary GH3 Cells
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BACKGROUND: Polychlorinated biphenyls (PCBs) may interfere with thyroid hormone (TH) signaling
by reducing TH levels in blood, by exerting direct effects on TH receptors (TRs), or both.

OBJECTIVE: Our objective was to identify individual PCBs that directly affect TH signaling by
acting on the TR.

METHODS: We administered a mixture of six PCB congeners based on their ortho substitution pat-
tern, including PCBs 77 and 126 (non-ortho), PCBs 105 and 118 (mono-ortho), and PCBs 138
and 153 (di-ortho), to pregnant Sprague-Dawley rats from gestational days (G) 6 to 16. This mix-
ture, or various combinations of the components, was also evaluated in a transient transfection
system using GH3 cells.

RESULTS: The mixture reduced serum TH levels in pregnant rats on G16 but simultaneously
up-regulated the expression of malic enzyme in liver. It also functioned as a TR agonist 7z vitro;
however, none of the individual PCB congeners comprising this mixture were active in this system.
Using the aryl hydrocarbon receptor (AhR) antagonist a-naphthoflavone, and the cytochrome
P450 (CYP)1A1 antagonist ellipticine, we show that the effect of the mixture on the thyroid
hormone response element required AhR and CYP1AL.

CONCLUSIONS: We propose that PCB 126 induces CYP1AL1 through the AhR in GH3 cells, and
that CYP1AL1 activates PCB 105 and/or 118 to a form a compound that acts as a TR agonist.
These data suggest that some tissues may be especially vulnerable to PCBs interfering directly with
TH signaling due to their capacity to express CYP1A1 in response to coplanar PCBs (or other
dioxin-like molecules) if sufficient mono-ortho PCBs are present.
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Polychlorinated biphenyls (PCBs) are a class
of industrial compounds consisting of paired
phenyl rings with various degrees of chlori-
nation (Chana et al. 2002). Although their
production was banned in the 1970s after
more than a billion kilograms of PCBs were
produced (Erickson 2001), they remain
ubiquitous, persistent environmental conta-
minants that are routinely found in samples
of human and animal tissues (Fisher 1999).
In addition, biomonitoring studies continue
to indicate that PCB levels in maternal and
cord blood remain significant (e.g., Chen
et al. 2006; De Saeger et al. 2005; DeCaprio
et al. 2005; Furst 2006; Otake et al. 2007).
Several epidemiological studies have reported
an association between PCB body burden
and neurodevelopmental deficits in neonates,
infants, and school children (Grandjean et al.
2001; Jacobson and Jacobson 1996;
Jacobson et al. 1990; Koopman-Esseboom et
al. 1996; Rogan and Gladen 1992; Rogan
et al. 1986). PCBs may exert a number of
actions on the developing nervous system
(Schantz et al. 2003). One potential mecha-
nism by which PCBs may produce neuro-
toxic effects is by interfering with the ability
of thyroid hormone (TH) to direct normal
development.

TH is essential for normal brain develop-
ment both before and after birth. Studies
focused on the effects of TH insufficiency in
neonates and infants indicate that the effects
depend both on the severity and on the tim-
ing of low TH (Zoeller and Rovet 2004).
Thus, if PCBs interfere with TH signaling to
such an extent that development is compro-
mised, the neurological or cognitive domains
affected will likely reflect the timing and
amount of PCB exposure. However, the spe-
cific effects of PCBs on neurological or cogni-
tive domains potentially will also depend on
the mechanism(s) by which PCBs interfere
with TH signaling.

PCBs may interfere with TH signaling
solely by causing a state of relative TH insufh-
ciency. In animal studies, PCB mixtures or
individual congeners can significantly reduce
circulating total (Bastomsky 1974, 1976;
Brouwer et al. 1998; Ness et al. 1993; Seo
et al. 1995) and free thyroxine (Ty; e.g.,
(Hallgren and Darnerud 2002; Morse et al.
1996), as well as serum triiodothyronine (T3)
(e.g., Roegge et al. 2006). Some studies report
that serum thyroid-stimulating hormone
(TSH) is elevated by PCBs in response to low
T4 (Fisher et al. 2006), whereas others report
essentially no effect of PCB exposure on serum
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TSH (Hood et al. 1999). PCB exposure may
also impact thyroid status in humans. Several
studies have identified a negative association
between PCB body burden and various mea-
sures of thyroid function (Langer et al. 2005,
2007; Persky et al. 2001; Wang et al. 2005).
However, other studies have found a positive
association between PCB body burden and
TH levels (e.g., Otake et al. 2007), and still
others find no association [see review by
Hagmar (2003)]. Thus, at least part of the
ability of PCBs to produce neurotoxic effects
may be attributable to their ability to reduce
serum thyroid hormone levels.

If PCBs act by reducing TH levels, then
their effects should mimic those of TH insuf-
ficiency produced by other kinds of drugs or
conditions such as propylthiouracil or low
iodine. However, the effects of PCBs on
developing animals are not fully consistent
with effects of low TH [reviewed by Roegge
et al. (2006)]. For example, although PCBs
(Aroclor 1254, A1254) can reduce serum TH
levels to below the limit of detection for a sen-
sitive radioimmunoassay in rat pups, body
weight was not reduced as it would have been
if TH levels had been reduced with propyl-
thiouracil (e.g., Zoeller et al. 2000). In con-
trast, some effects of PCBs appear as though
they have a slight thyromimetic effect (Roegge
et al. 2006). PCBs can increase the expression
of the TH-response gene RC3 (Gauger et al.
2004; Zoeller et al. 2000) and can produce a
small but significant effect on Purkinje cell
height (Roegge et al. 2006). Thus, it is possi-
ble that some individual PCB congeners, or
classes of congeners, can directly interact with
the TH receptor.

A significant challenge to identifying PCB
congeners that may act as direct TR analogues
is that there are 209 individual PCB congeners
(and their metabolites), based on the pattern of
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chlorine substitutions, representing a poten-
tially very large candidate pool. However, these
PCB congeners can be broadly categorized
according to their dioxin-like activity in that
PCBs with zero or one ortho chlorine, two para
chlorines, and at least two meta chlorines; these
congeners can adopt a planar structure similar
to that of dioxin (tetrachlorodibenzo-p-dioxin)
and can bind to and activate the aryl hydrocar-
bon receptor (AhR) (Kodavanti and Tilson
1997; Tilson and Kodavanti 1997). In con-
trast, di-ortho-substituted PCBs may adopt a
non-coplanar conformation that does not act
through the AhR but nevertheless produce
neurotoxic effects (Fischer et al. 1998; Seegal
and Shain 1992).

Considering the complexity of PCB con-
gener profiles in commercial mixtures, we
developed a limited mixture of PCB congeners
that could be studied both iz vive and in vitro.

EI Cl Cl

PCB 77
Cl Cl Cl
PCB 105
EI Cl Cl Cl
Cl
PCB 138

We selected six PCB congeners on the basis of
their molecular structure and abundance in
human tissues, representing coplanar PCBs
(PCBs 77 and 126), mono-ortho-substituted
PCBs (PCBs 105 and 118), and di-ortho-sub-
stituted PCBs (PCBs 138 and 153) (Figure 1).
We then combined these six PCB congeners
into a mixture; the relative proportion of each
congener was based on their proportion in the
technical mixture A1254 (Frame et al. 1996)
because we have used A1254 in previous stud-
ies and this would serve as a frame of reference.
We evaluated whether this mixture could exert
thyroid hormone-like effects iz vivo and in a
rat pituitary cell line, GH3 cells.

Materials and Methods

Chemicals. Individual PCB congeners (Figure 1;
PCBs 77, 105, 118, 126, 138, and 153) and
methanol were purchased (AccuStandard Inc.,

Cl Cl

g

cl PCB 126

Cl Cl

s

Cl PCB 118

Cl Cl Cl

Cl Cl

s

Cl Cl
PCB 153

Figure 1. Chemical structures of PCB congeners that constitute the mixture used in the animal studies as
described in the text. (A) Non-ortho PCB congeners: 3,3',4,4'-tetrachlorobiphenyl, PCB 77, and 3,3',4,4' 5-
pentachlorobiphenyl, PCB 126. (B) Mono-ortho PCB congeners: 2,3,3',4,4’-pentachlorobiphenyl, PCB 105,
and 2,3',4,4' 5-pentachlorobiphenyl, PCB 118. (C) Di-ortho PCB congeners: 2,2',3,4,4',5"-hexachlorobiphenyl,
PCB 138, and 2,2',4,4' 5,5"-hexachlorobiphenyl, PCB 153.

Table 1. Composition of PCB mixtures.

PCB PCB

treatment Composition 77 105 118 126 138 153
Mix 6 Percent in A12542 0.200 7.400 13.600 0.020 6.000 3.500
Dose 1 Congener dose (mg/kg)? 0.016 0.592 1.056 0.001 0.480 0.304
Dose 2 Congener dose (mg/kg)® 0.026 0.967 1722 0.003 0.784 0.496

aEach value represents the percentage of A1254 (by mass) contributed by the PCB congener labeled at the top of the col-
umn, as described by Frame et al. (1996). Thus, this mixture of six PCBs represents 30.72% of the total mass of A1254. ®Each
value represents the milligrams per kilogram of PCB congener delivered to each animal daily. This mixture was calibrated
to deliver 30.72% of 8 mg/kg/day. Thus, the total dose of PCBs delivered to the animals was 2.46 mg/kg/day. °Each value
represents the milligrams per kilogram of PCB congener delivered to each animal daily. This mixture was calibrated to

deliver a total of 4 mg/kg/day.

1624

New Haven, CT, USA). The percentage of
detectable impurities reported by the manu-
facturer were 0, 0, 0.5, 0.6, 0, and 0%,
respectively. The AhR antagonist (a-naph-
thoflavone, a-NF), dimethylsulfoxide
(DMSO), 1-3,3",5-triiodothyronine (T3), and
the cytochrome P450 (CYP)1A1 antagonist
(ellipticine) were purchased (Sigma-Aldrich
Co., St Louis, MO, USA). The CYP1B1
antagonist (2,3",4,5 -tetramethoxystilbene,
TMS) was purchased (Cayman Chemical,
Ann Arbor, MI, USA).

Animals. Animals were treated humanely
and with regard for alleviating suffering; all
procedures were performed in accordance with
the National Institutes of Health guidelines
for the ethical treatment of animals and were
approved by the University of Massachusetts-
Ambherst Institutional Animal Care and Use
Committee before initiating these studies.
Timed-pregnant Sprague-Dawley rats (7 = 18;
Zivic-Miller Laboratories, Inc. (Zelienople,
PA, USA) arrived in our animal facility 2 days
after insemination (gestational day 2, G2).
The animals were individually housed in plas-
tic cages with food and water provided contin-
uously, and maintained on a 12-hr:12-hr light
cycle (06001800 hours). Beginning on the
day of arrival, each dam was weighed in the
morning and provided with a single wafer
(Keebler Golden Vanilla Wafers, Battle Creek,
MI, USA) 1 hr before lights off. Beginning on
G6 and continuing daily until sacrifice on
G16, the dams were weighed in the morning
and provided with a wafer dosed with
0.5 pL/g body weight of a solution calibrated
to deliver specific doses of PCB Mix 6
(Table 1). Wafers were dosed individually
each morning based on the dam’s weight. The
PCB mixture was dissolved in contaminant-
free methanol, pipetted onto the wafer, and
allowed to dry in a fume hood throughout the
day before feeding. Control wafers were dosed
with methanol alone.

Radioimmunoassay. Total T, was meas-
ured in 5 pL of rat serum using a barbital
buffer system. Briefly, each assay tube con-
tained 100 pL barbital buffer [0.11 M barbital
pH 8.6, 0.1% wt/vol 8-anilino-1-naptha-
lene—sulfonic acid ammonium salt (ANS),
15% bovine y-globulin Cohn fraction II,
0.1% gelatin], 100 pL anti-Ty (rabbit, Sigma-
Aldrich Co.; diluted to provide a final
concentration of 1:30,000), and 100 pL
125]_labeled T4 (PerkinElmer, Inc., Waltham,
MA, USA). Standards were prepared from T4
(Sigma-Aldrich Co.) measured using a Cahn
electrobalance (Cahn Instruments, Madison,
W1, USA); standards were run in triplicate,
whereas samples were run in duplicate.
Standards were calibrated to be able to mea-
sure serum T levels from 0.4 to 25.6 pg/dL.
Tubes were incubated at 37°C for 30 min,
then chilled on wet ice for 30 min. Bound
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counts were precipitated by adding 300 pL
ice-cold polyethylene glycol 8000 (20%
wt/wt; Sigma-Aldrich Co.). Tubes were cen-
trifuged at 1,800 x g for 20 min at 4°C, the
supernatant was aspirated, and the pellet
counted in a gamma counter (Packard
Cobra II; PerkinElmer Inc.). The assay was
run at 40-50% binding; nonspecific binding
was generally below 8%. The assay was vali-
dated for rat serum by demonstrating paral-
lelism between the standard curve and a
dilution series of rat serum. The two slopes
did not vary significantly as evaluated by #test
for two slopes (data not shown). The variabil-
ity within the assay was determined by run-
ning 10 replicates of three different serum
samples that represent a low, medium, and
high value on the standard curve. The coeffi-
cient of variance (CV) for 0 ng/mL = 0.9%;
for 3.2 pg/dL, CV = 4.7%; and for
25.6 pg/dL, CV = 3.8%. All experimental
samples were evaluated in a single assay

Transient transfection assays. GH3 cells
were obtained from the American Type Tissue
Collection (ATTC; Rockville, MD, USA) and
were maintained in Hams F-12K media sup-
plemented with 100 U/mL penicillin,
100 pg/mL streptomycin, 2 mM L-glutamine
(Mediatech, Herndon, VA, USA), and 10%
fetal bovine serum (FBS; Hyclone, South
Logan, UT, USA) in a 37°C humidified incu-
bator with 5% CO.,.

Cells at 70% confluence were plated at a
density of 2 x 103 cells per well in 24-well
plates 24 hr before transfections using Superfect
(QIAGEN, Valencia, CA, USA) according to
the manufacturer’s instructions. Cells were
transfected with a DR4-tk-Luc firefly luciferase
vector [kindly provided by D. Darling
(Cabanillas et al. 2001)], a mutated DR4
(ADR4-tk-Luc firefly luciferase vector provided
by A. Hollenberg, Harvard University,
Cambridge, MA) plus the pRL-CMV renilla
luciferase vector (Promega Corp., Madison,
W1, USA) to control for transfection efficiency.
The sequence of the DR4 promoter is
5’-ttatAGGTCAcatgAGGTCAagtt-37; the
ADR4 was different by a single base 5'-
ttatAGATCAcatgAGGTCAagtt-3” (capital let-
ters are half-sites; note base difference in the
first half-site ADR4). Twenty-four hours after
transfection, the media was removed, washed
with 1x phosphate-buffered saline (PBS), and
replaced with media containing 10% AG 1-X8
resin (analytical grade; Bio-Rad Laboratories,
Hercules, CA, USA) treated FBS [to remove T;
from the serum (Samuels et al. 1979)]. Cells
were treated by replacing stripped media with
media containing various compounds as
described below in individual experiments.
PCBs were dissolved in DMSO and T3 was dis-
solved in ethanol (EtOH); the final concentra-
tion of vehicle was always < 0.168%. The
concentration of PCBs is shown in Table 4.

After 24-hr incubation, the media was
removed, cells were washed with 1x PBS, and
lysed using passive lysis buffer (Promega
Corp.). Luciferase activity was detected using
the Dual-Luciferase’ Reporter Assay System
(Promega Corp.) according to the manufac-
ture’s instructions, and the light output was
measured with a luminometer (MONLIGHT
1500; Analytical Luminescence Laboratory, San
Diego, CA, USA). All experiments were per-
formed independently 3 times, with treatments
performed in triplicate for each experiment.

Ethoxyresorufin-O-deethylation (EROD)
assay. The EROD assay was performed
according to Peters et al. (2004), a modifica-
tion of the method described by Burke and
Mayer (1974). After 24 hr, the media was
removed and the cells were washed twice with
1x PBS and serum-free medium containing
5 mM MgCl,, 5 pM 7-ethoxyresorufin (BIO-
MOL International LP, Plymouth Meeting,
PA, USA), and 10 pM dicumarol (Sigma-
Aldrich Co.) was added to each well. The
conversion of 7-ethoxyresorufin to resorufin,
which has an excitation and emission wave-
length of 544 nm and 590 nm, respectively,
was followed fluorometrically at 37°C over a
10-min period using a POLARstar OPTIMA
plate reader (BMG LABTECH GmbH,
Offenburg, Germany). A standard curve relat-
ing fluorometric units to resorufin (Sigma-
Aldrich Co.) concentrations was used to
convert the observed fluorometric units to
picomoles of resorufin formed. After the fluo-
rometric readings for resorufin were taken,
the reaction mixture was aspirated and the
cells were lysed with CelLytic-M (Sigma-
Aldrich Co.) to obtain protein measurements
using a BCA assay kit (Pierce Biotechnology,
Inc., Rockford, IL, USA).

RNA isolation. Total RNA was extracted
from the liver of dams, or from GH3 cells,
using an acid—phenol extraction procedure
(Chomczynski and Sacchi 1987), according to
the manufacturer’s instructions (Trizol;

Invitrogen Corp., Carlsbad, CA, USA),
followed by standard phenol/chloroform
extraction. The final RNA pellet was resus-
pended in 0.1% sodium dodecyl sulfate or
nuclease-free water. Total RNA was quantified
by ultraviolet spectrophotometry and the
integrity confirmed by gel electrophoresis.

Real-time polymerase chain reaction
(PCR) assay. Relative levels of mRNA were
determined by quantitative real-time PCR
using the Mx3000P real-time PCR system
(Stratagene, La Jolla, CA) and primer
pairs/probes described in Table 2. The assay
for malic enzyme (ME) expression was per-
formed in 10 pL of 1x QuantiTect SYBR
RT-PCR Master Mix (QIAGEN GmbH,
Hilden, Germany) containing 200 nM for-
ward primer, 200 nM reverse primer, and
100 ng of total RNA. The assay for CYP1Al
and CYP1BI expression was performed in
10 pL of 1x QuantiTect Probe RT-PCR
Master Mix (QIAGEN GmbH) containing
400 nM forward primer, 400 nM reverse
primer, 200 nM probe, and 1 pg of total
RNA. The conditions for cDNA synthesis and
target mRNA amplification were performed as
follows: 1 cycle of 50°C for 30 min; 1 cycle of
95°C for 15 min; and 45 cycles each of 94°C
for 15 sec, 58°C (CYP1A1/CYP1B1) or 60°C
(ME) for 30 sec, and 76°C for 30 sec. All val-
ues were normalized to the amplification of
[-actin mRNA, which was performed in par-
allel wells for each treatment and real-time
PCR analysis was performed in duplicate wells
for each treatment.

Statistical analysis. The in vivo results
were analyzed using a one-factor analysis of
variance (ANOVA). The in vitro data were
analyzed using a Student #test or two-factor
ANOVA. Post-hoc tests, where appropriate,
were performed using the Bonferroni #test,
where the mean squared error term in the
ANOVA table was used as the point estimate
of the pooled variance (SuperAnova software;
Abacus Concepts, Inc., Berkley, CA, USA).

Table 2. Sequences of the CYP primer/probe sets used for PCR and quantitative PCR.

Gene Primer 5" — 3’ sequence Amplicon size (bp)

CYPIAT Forward CCATGACCAGGAACTATGGG 340
Reverse TCTGGTGAGCATCCAGGACA

CYP1A2 Forward TGCAGAAAACAGTCCAGGA 794
Reverse GGAAAAGGAACAAGGGTGGC

CYP1B1 Forward TGACAGACAGAGAGTGCATGAGCA 495
Reverse TGGGTCTGGTTGGCTTAATGAGGA

Malic enzyme Forward AGGCCTCTTTATCAGTATCCAC 140
Reverse CCATCCCGTACAACCAA

CYPIAT Forward GAAGAAGCTAATCAAAGAGCACTACAGG 80
Reverse CAATGCTCAATGAGGCTGTCTG
Probe FAM-CATTTGAGAAGGGCCACATCCGGG-BHQ

CYP1B1 Forward TGGCTGCTCATCCTCTTCACC 73
Reverse CCCACAACCTGGTCCAACTC
Probe FAM-ATGTGCAGGCCCGAGTGCA-BHQ

B-Actin Forward TGAACCCTAAGGCCAACCGTGAAA 101
Reverse ATACAGGGACAACACAGCCTGGAT
Probe FAM-ATCATGTTTGAGACCTTCAACACC-BHQ
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Results

Dams. Exposure to the defined mixture of six
PCBs significantly reduced circulating levels
of total T4 in G16 dams (Figure 2A; F 31 =
22.5, p=0.0001). Serum T4 was reduced to a
similar extent in animals exposed to both
doses of the PCB Mix 6. Despite this reduc-
tion in serum total Ty, real-time PCR analysis
of RNA extracted from maternal liver
revealed that ME mRNA levels were signifi-
cantly increased in animals treated with both
doses of the PCB Mix 6 (Figure 2B; 5 15 =
17.730, p = 0.001). Like the effects of this
PCB mixture on serum total Ty, there was no
apparent difference in the ability of the two
doses of the PCB Mix 6 to induce ME expres-
sion in the maternal liver.

GH3 cells. The in vivo results indicated
that one or more of the PCB congeners pre-
sent in this defined mixture of six PCBs could
act as a direct agonist on the TR. To test this
hypothesis, we evaluated the activity of the
PCB mixture and the individual components
in a transient transfection system using a rat
somatomamatroph cell line (GH3) trans-
fected with a reporter gene (luciferase) driven
by a canonical TH response element (TRE;
direct repeat with a four-base spacer, DR4).

To establish the response characteristics of
this system, we first evaluated the effect of 1 x
10”7 M T3, and found a significant increase
(3.46 + 0.42-fold) in luciferase activity in cells

3.0 EI
25 [
s
> 20
=2
= 15
E
° 1.0
05 *%
0 [ —-———
Control Dose 1 Dose 2
PCB treatment

transfected with the DR4-tk-Luc reporter
plasmid (Figure 3A). This effect was blocked
by a single base mutation in the DR4 TRE;
T3 did not increase luciferase activity in cells
transfected the ADR4-tk-Luc vector
(Figure 3A). Similarly, the PCB Mix 6
(1073 M) significantly increased (1.51 =
0.21-fold) luciferase in cells transfected with
DR4-tk-Luc but not in cells transfected with
ADR4-tk-Luc (Figure 3B). These findings
provide strong support for the hypothesis that
one or more of the PCB congeners in this
defined mixture can act as a direct agonist on
the TR. However, none of the individual
PCB congeners present in the defined mix-
ture caused an increase in relative luciferase
activity (Figure 3C).

Because the mixture of six PCB congeners
acted as a TH agonist in GH3 cells in combi-
nation but not as individual congeners, we con-
sidered the possibility that one or more of these
parent PCB congeners must be “activated” by
metabolism to form TH agonists. Previous
studies have shown that pituitary cells exhibit a
robust cytochrome P450 response to dioxin
(Huang et al. 2002, 2003); these enzymes are
known to hydroxylate PCBs (Sjodin et al.
1998). Thus, it was possible that one or more
hydroxylated metabolites accounted for the
agonist effect of the mixture of six PCBs.

To test this hypothesis, we first character-
ized the response characteristics of GH3 cells

4.0
. - s
30
25
20
15
10 =
05

0

ME mRNA
(fold induction)

Control Dose 2

Dose 1
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Figure 2. Effect of PCB treatment on serum total T, (A) and ME mRNA in liver (B) of pregnant Sprague-
Dawley rats at the time of sacrifice on G16. Error bars represent mean + SE (A) or mean + SE ME/B-actin
(B). Numbers of animals in each group are as follows: (A) Control, 6; Dose 1, 8; Dose 2, 8. (B) Control, 5; Dose
1,6; Dose 2, 7. See “Materials and Methods” for treatment details.

**p < 0.01, significantly different from control group using the Bonferroni t-test after one-way ANOVA.
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to AhR agonists. Cells treated with the AhR
agonist 3-NF induced the expression of both
CYP1AI and CYP1B1 mRNAs in GH3 cells
(data not shown) but CYP1A2 is not
induced. Sequence analysis of the amplified
products confirmed the authenticity of these
PCR products.

If our defined mixture of six PCB con-
geners induces the expression of CYP genes
that metabolize parent PCB congeners, then
the dioxin-like PCBs (e.g., PCB 126) should
induce a CYP response that requires the AhR.
Real-time PCR analysis revealed that PCB
126 significantly increased the expression of
both CYPIAI (20-fold, Figure 4A) and
CYPIBI (5-fold, Figure 4B) (F = 375.656,
»=0.0001; F,5=17.585, p = 0.0031, respec-
tively), and that a-NF significantly blocked
the effect of PCB 126 (Figure 4) on the
induction of both genes.

Considering that PCB 126 could induce
the expression of CYP enzymes that could
metabolize PCBs, we next tested whether AhR
activation and induction of these P450
enzymes were required for TH agonist activity
in GH3 cells. To test this hypothesis, we used
ellipticine or TMS to block CYP1A1 or
CYP1B1 activity, respectively. To confirm that
these drugs would block the expected activities
in GH3 cells, we first evaluated the effect of
PCB 126 on EROD activity (Table 3). GH3
cells were treated with PCB 126 (107> M) in
the presence or absence of ellipticine or TMS
(1 x 107 Mo 1 x 107> M). PCB 126 signifi-
cantly increased EROD activity in GH3 cells,
and this was completely blocked by the addi-
tion of either ellipticine or TMS. All doses of
ellipticine (107—107° M) completely blocked
PCB 126-induced EROD activity; thus, we
used the lowest dose in the following experi-
ments. In contrast, the lowest dose of TMS
(107 M) did not completely block the
PCB 126-induced EROD activity in GH3
cells; therefore, we used 10¢ M TMS in the
following experiment.

These experiments showed that PCB 126
could induce AhR-dependent CYP1AL1, and
to a much lesser extent CYP1B1 expression in

]
a

O

2] ~ o
=] a S

Relative luciferase activity
o
R

o

Vehicle 77 105 118 126 138 153
Individual PCB congeners

Figure 3. Effects of 1 x 107 M T3 (A), 10 uM PCB Mix 6 (B), or individual PCB congeners (see Table 4 for concentrations) (C) treatments on relative luciferase activity
in GH3 cells. Error bars represent mean + SE of relative luciferase activity normalized to control wells. All treatments were performed in triplicate, and the final
results obtained from three separate experiments. Values are reported as percent control for the purpose of illustration.

**p < 0.01, significantly different from control (vehicle treatment) group using a Student t-test.
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GHS3 cells, and that these effects could be
blocked by a-NF, ellipticine or TMS. To test
whether the ability of the PCB Mix 6 to acti-
vate luciferase activity through the canonical
TRE required AhR-induced CYP activity, we
employed these drugs to block AhR, CYP1A1,
or CYP1B1. However, in principle, these
drugs may also interfere with the TR; thus, we
first demonstrated that a-NF, ellipticine, or
TMS, did not interfere with the ability of T
to induce luciferase activity in GH3 cells
(Figure 5A). We found that the PCB Mix 6
(105 M) significantly increased luciferase
activity in GH3 cells (F,,15)= 7.229, p =
0.0002), and this was significantly reduced by
concurrent treatment with 1 x 10°© M a-NF
orl x 107 M ellipticine. In contrast, concur-
rent treatment with 1 x 10 M TMS did not
significantly inhibit the effect of PCB 126
(Figure 5B).

These findings support the hypothesis
that the ability of this defined mixture of six
PCBs to activate the TR depends on AhR-
induced CYPI1A1. Because PCB 126 is
known to bind to and activate the AhR
(Toyoshiba et al. 2004), we first tested
whether PCB 126 was the most potent AhR-
agonist in the mixture. Real-time PCR analy-
sis revealed that the expression of CYP1A1
was up-regulated only when PCB combina-
tions included PCB 126 [F] 5o = 0.0195, p =
0.0001 (Figure 6A)]. These findings indicated
that, in the Mix 6, PCB 126 was the domi-
nant inducer of CYP1A1. To test whether
PCB 126 is required to be present in a mini-
mal mixture of PCBs to activate the
DR4-tk-LUC construct in GH3 cells, we
tested the same PCB combinations for their
ability to drive luciferase activity from the
DRA4. Interestingly, relative luciferase activity
was increased only in GH3 cells treated with
the combination of PCBs 126, 105, and 118
(Figure 6B; F 67 = 4.371, p = 0.0404). Post-
hoc analysis using the Bonferroni #test
revealed that cells treated with PCBs 126,
105, and 118 exhibited a significantly higher
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relative luciferase signal than cells treated with
PCBs 105 and 118 alone.

Discussion

Previous studies have reported that PCB mix-
tures can have paradoxical effects on TH sig-
naling, indicating that at least some PCB
congeners or their metabolites can exert a
direct action on the TH receptor (Zoeller
2005). We now show that a limited mixture
of only six PCB congeners can reduce serum
TH levels at the same time that it increases the
expression of a well-known TH-response gene,
ME, in the liver; thus, this limited PCB mix-
ture can recapitulate the effect of a complex
technical mixture, A1254 (Gauger et al. 2004;
Zoeller et al. 2000). In addition, this limited
mixture exerted a TH-like action iz vitro only
when present as a mixture and not when pre-
sent as individual parent congeners. This
unexpected result was found to be due to a
requirement for AhR activation and CYP1A1
expression and activity, which is not uni-
formly induced by the various individual con-
geners. Thus, we propose a two-step process in
which an AhR ligand (e.g., PCB 126) induces
CYP1A1, which then acts on noncoplanar
PCBs (e.g., PCBs 105 and 118), producing
analogues that activate the TR. This mecha-
nism may account for tissue- or cell-specific
differences in the effect of PCB exposure on
TH signaling,

These data show that PCBs can exert a
TR agonist effect both iz vive and in vitro.
This interpretation in vivo is based on the
observation that this mixture increased the
expression of ME mRNA in the liver. The
ME gene is well known to be a direct target of
thyroid hormone action (e.g., Yin et al.
2005). Thus, we reasoned that one or more of
the six PCBs that made up our mixture would
exert an agonist effect on the TR in GH3
cells. This PCB mixture was designed to
include two each of the non-ortho, mono-
ortho, and di-ortho substituted PCBs. In addi-

tion we assembled the mixture using the

6 a

5

4

CYP1B1 mRNA
(fold induction)

Vehicle

PCB 126—a-NF PCB 126 + a-NF
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Figure 4. Role of AhR in PCB 126-induction of cytochrome P450 genes. Cells were treated with 10uM PCB
126 in the presence or absence of 1 x 10 M of the AhR antagonist, a-NF. The levels of CYP1AT1 (A) and
CYP1B1 (B) mRNAs were measured by real-time PCR. PCB 126 significantly increased CYP1A1 (A) and
CYP1B1 (B) mRNAs and a-NF abrogated these effects. Error bars represent mean + SE CYP1A1/B-actin (4)
or CYP1B1/B-actin (B) mRNAs and are expressed as fold induction over vehicle alone (DMSO).

ap < 0.01, significantly different from control group using the Bonferroni t-test after one-way ANOVA. 5p < 0.01, €p < 0.05,
significantly different from PCB 126 —treated group using the Bonferroni t-test after one-way ANOVA.
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relative proportions defined for A1254 by
Frame et al. (1996), and a mass of the total
mixture that would be contained in a dose of
8 mg/kg A1254 that we have previously
shown to be effective in producing TH-like
effects (Zoeller et al. 2000). Because we also
considered the possibility that the mass of
PCBs given was important, our second dose
was set to 4 mg, with the individual con-
geners being assembled in the same relative
proportion of dose 1. Interestingly, we did
not find a dose-response effect on serum Ty,

Table 3. Effect of CYP inhibitors on EROD activity
induced by PCB 126 in GH3 cells.

EROD
P450 P450 (pmol/min/mg,
agonist (M) antagonist (M) mean + SE)
— — 8.598 +1.273
PCB 126 (1079) — 79.841 +4.243"
PCB 126 (107  Ellipticine?(10~7) ~ 13.048 +0.182
PCB 126 (1079) Ellipticine?(1078)  15.442 + 2.679
PCB 126 (1079) Ellipticine? (107) 12213 +0.682
PCB 126 (107  TMSb(107) 56.745 +6.155"
PCB 126 (107  TMSL(1079) 19.867 + 0.628
PCB 126 (107  TMS?(1079) 18.273 +2.166

aCYP1A1 antagonist. °CYP1B1 antagonist.**Treatment
group significantly different from control group (p < 0.001).
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£ E' -
s 400 B T,
-]
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Antagonist treatment
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Figure 5. Effects of cytochrome P450 antagonsits on
Ts-induced (A) and PCB Mix 6-induced (B) relative
luciferase activity in GH3 cells. “~" indicates no
treatment; “+” indicates treatment with compound
shown left of row. a.-NF and TMS were used at
concentrations of 1078 M; ellipticine was used at
107 M. Error bars represent mean + SE of relative
luciferase activity reported as percent control for
the purpose of illustration.

ap < 0.01, significantly different from control group using
the Bonferroni t-test after one-way ANOVA. #p < 0.01, sig-
nificantly different from PCB Mix 6-treated group using the
Bonferroni t-test after one-way ANOVA.
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which likely indicates that dose 1 was suffi-
cient to reduce serum total T4 to a very low
level that was not further reduced by dou-
bling the dose of the mixture.

Our studies in GH3 cells demonstrate
that the defined PCB mixture can exert an
agonist effect on the rat TR. GH3 cells are
well known to be sensitive to TH (e.g.,
Ghisari and Bonefeld-Jorgensen 2005), and
they express both TR and TR (confirmed
in our studies by PCR; data not shown). In
addition, the luciferase construct we
employed was based on the canonical TH
response element, a DR4, which binds to the
TR to drive gene expression (Quack et al.
2002). Finally, we confirmed the specificity of
this TRE using the ADR4 construct that does
not bind to the TR or mediate TH-depen-
dent gene expression. Considering this, it was
surprising to find that the PCB mixture could
exert a TH agonist effect in GH3 cells, but
that none of the PCB congeners could exert
such an action when tested alone.

There were at least two explanations for
this finding. First, because we used a concen-
tration of individual PCB congeners present
as a component in the full mixture (Table 4),
it was possible that the dose of each congener
was additive on the TR in the mixture, but
the concentration of individual congeners was
not sufficient to produce an effect alone. In
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contrast, it was possible that different PCB
congeners have different effects, with coplanar
PCBs capable of acting on the AhR and
inducing the expression of metabolic machin-
ery that could modify other PCB congeners
in the mixture to be able to act on the TR in
the concentrations present in the mixture. We
reasoned that we could discriminate between
these hypotheses using a series of experiments
that tested whether AhR activation and CYP
expression are required for TR agonist activity
and that used various combinations of mono-
and di-ortho substituted congeners.

First, we verified that GH3 cells express
CYP1A1l and CYP1BI in response to a
known AhR agonist, B-NF. In addition, we
showed that PCB 126 induces CYP1A1l and
CYP1B1, and that this was associated with an
increase in EROD. Finally, we also verified
that these effects of PCB 126 were blocked by
ellipticine, TMS, or by the AhR antagonist
o-NF. Therefore, the finding that the AhR
antagonist o-NF and the CYP1A1 antagonist
ellipticine blocked the ability of the mixture
of six PCB congeners to activate DR4-tk-Luc
demonstrated that AhR activation and
CYPI1AL expression was necessary for this
mixture to act on the TR. However, these
drugs did not alter the ability of Tj to activate
the DR4-tk-Luc. Considering this, we rea-
soned that PCB 126 was necessary, but not
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Figure 6. Effects of PCB congener combinations on expression of CYP1AT mRNA (A) and TR-mediated rel-
ative luciferase activity (B) in GH3 cells. (A) PCB concentrations are described in Table 4, CYP1TA1 mRNA
was measured by real-time PCR. Only treatment groups that included PCB 126 significantly increased

CYP1A1 expression. (B) PCB congener concentrations

are described in Table 4. Error bars represent mean

+ SE of relative luciferase activity and values are reported as percent control for the purpose of illustra-
tion. An increase in relative luciferase activity was observed when cells were PCBs 126, 105, and 118.

**p < 0.01 [significantly different from corresponding PCB combination group not treated with PCB 126 (A) or group
treated with PCBs 118 and 105 (B) using the Bonferroni t-test after two-way ANOVA].

Table 4. Composition of PCB mixtures.

Concentrations of PCB congeners (M)

PCB combinations 105 118 126 138 153
Vehicle 0.00 0.00 0.00 0.00 0.00
105+ 118 + 138 + 153 242 431 0.00 1.96 1.24
105+ 118 2.42 431 0.00 0.00 0.00
138 + 153 0.00 0.00 0.00 1.96 1.24
126 0.00 0.00 0.01 0.00 0.00
126+ 105+ 118 + 138 + 153 2.42 431 0.01 1.96 1.24
126+ 105+ 118 242 431 0.01 0.00 0.00
126 + 138 + 153 0.00 0.00 0.01 1.96 124

Each value represents the molar concentration of the PCB congener used for in vitro experiments. This mixture was cali-
brated to deliver a total of 10 uM PCB. In experiments in which single congeners were tested, the concentration is as

shown in this table except where otherwise noted.
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sufficient, for TR activation. This interpreta-
tion was confirmed by showing that the mix-
tures of all noncoplanar PCBs together (i.e.,
PCBs 105, 118, 138, and 153), or separated
by their ortho-substitution pattern (i.e., PCBs
105/118 or 138/153), required the presence
of PCB 126 to activate the DR4 construct in
GH3 cells. These observations strongly sup-
port the hypothesis that PCB 126 induces the
expression of metabolic enzymes that “acti-
vate” noncoplanar PCBs to form TR agonists
in GH3 cells.

Interestingly, only the combination of
PCBs 105 and 118 contained the full TH-
like effect of the mixture of six PCB con-
geners when combined with PCB 126. This is
perplexing because this effect was not
observed when these congeners were com-
bined with PCBs 138 and 153. This mixture
of five PCB congeners was only missing
PCB 77 from the original mixture of six
PCBs; thus, it is not immediately obvious
why the mixture that did not contain PCB 77
would not exhibit TH-like activity.

PCBs 105 and 118 are metabolized to form
4-hydroxy-2,3,3",4",5-pentachlorobiphenyl
(4-OH-PCB107) (Sjodin 1998); thus, the cur-
rent data indicate that 4-OH-PCB107 may be
an important TR agonist. This particular PCB
metabolite also is abundant in PCB-exposed
humans and cord blood, rats and their fetuses,
Baltic seals, and white-tailed eagles (Bergman
et al. 1994; Letcher et al. 1999; Meerts et al.
2002; Sandau et al. 2002; Sjodin 1998; Sjodin
et al. 2000). In fact, 4-OH-PCB107 metabo-
lite levels are higher in children than in their
mothers (Fangstrom et al. 2005). Several stud-
ies have found that hydroxylated PCB
metabolites can affect the TH receptor. We
have shown that 4-OH-PCB106 can act as a
direct TR agonist in GH3 cells (You et al.
2006). Kitamura et al. (2005) reported that
nine separate hydroxylated PCB congeners can
bind to the rat TR with an ICs; (half-maximal
concentration) as low as 5 pM. These hydrox-
ylated PCBs included those with low (tri-
chloro) to high (septa-chloro) chlorine
substitution patterns. Arulmozhiraja et al.
(2005) identified several PCB congeners that
exhibit weak TH activity in a yeast two-hybrid
assay optimized to identify such activity.
Thus, PCB hydroxylation 7 situ may be an
important mechanism by which PCBs can
interfere with TH action in tissues.

Not all investigators report that PCBs act
as agonists on the TR. Kimura-Kuroda et al.
(2005, 2007) found that several hydroxylated
PCBs interfere with T3-dependent neurite
outgrowth in mouse cerebellar Purkinje cell
primary cultures. In addition, Bogazzi et al.
(2003) found that a commercial mixture of
PCBs (A1254) inhibited TR action on the
ME promoter in a chloramphenicol acetyl-
transferase assay. Similarly, Iwasaki et al.
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(2002) found that a specific hydroxylated
PCB congener inhibits TR-mediated tran-
scriptional activation in a luciferase assay at
concentrations as low as 1071 M. These find-
ings do not necessarily conflict with findings
that PCBs can act as TR agonists. As imper-
fect TH analogues, PCBs may well exert dif-
ferent actions on the TR on different DNA
regulatory elements or in different cell types.
Therefore, taken together, these findings indi-
cate that a wide array of hydroxylated PCB
metabolites may exert direct actions on the
TR, and their production in specific cell types
by the process we have identified may be an
important element in the toxicity of PCBs.

In conclusion, the data presented here
indicate that specific PCBs are metabolized in
rat pituitary GH3 cells to form TR agonists.
The metabolic machinery responsible for this
metabolism is induced by PCBs that are not
themselves metabolized to form TR agonists.
These data suggest that different cell types and
tissues may respond differently to PCB expo-
sure, depending on their ability to express
these P450 proteins. In addition, these find-
ings suggest that PCB metabolites may
become sequestered in cells that perform these
metabolic steps; that is, PCBs may gain entry
into cells by a mechanism that is no longer
available to them for exit when they have been
modified. Although speculative, it would help
explain why different tissues are differentially
contaminated with specific PCB metabolites.
Finally, these data also indicate that epidemio-
logical studies should evaluate the association
of thyroid hormone end points with the com-
bination of exposures to TEQ (from any con-
taminant source) and specific PCB congeners
rather than single congeners alone.
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